Vehicular accidents

Outline

- Analytical tools
- Case studies of car accidents
 - Case study 1 : non collision
 - Case study 2 : midnight crash
 - Case study 3 : collision with pedestrian

Unit conversion

Multiply by						
Convert from	Convert to					
	m/s	km/h	mph			
m/s	1	3.6	2.24			
km/h	0.278	1	0.62			
mph	0.45	1.609	1			

 $http://www.engineeringtoolbox.com/velocity-units-converter-d_1035.html$

Analytical tools

- Analytical tools are used to evaluate the accidents.
- The analysis provide the accident reconstruction scenario.
- The analytical tools include

Kinematics

Work – kinetic energy theorem

Laws of conversation of momentum

Laws of conversation of energy

Basic energy method

- To bring a moving vehicle with a constant speed to a stop, a work by braking, skidding or crushing has to be done to reduce the vehicle's kinetic energy to zero.
- Skidding is a common way that causes the dissipation of kinetic energy of a vehicle.
- The skid mark with some other information can be used to compute a speed of a vehicle.

Features of skid marks

- A skid mark is the mark made by a tire which is stopped rolling and slides on the road surface.
- Different inflation of tires will lead to different appearances of the skid marks.
- Conventional marks are generally solid continuous streaks. They often begin and end abruptly. Skid marks from ABS on the other hand may follow an intermittent light and dark pattern.

https://www.quora.com/

http://forum.e46fanatics.com/showthread.php?t=461865/

Features of skid marks

- Different inflation of tyres will lead to different appearances of the skid marks.
- Try to finish the matching game below and give reasons for your choices.

Accident reconstruction

• Case study 1: non collision

An investigation of a single vehicle run-off case and In-depth Study on Road Accidents: Thailand Perspective By

M B Islam, S Ponboon and N Boontob

Thailand Accident Research Center (TARC)

ศูนย์วิจัยอุบัติแห่งประเทศไทย (http://www.tarc.or.th/)

Asian Institute of Technology (AIT)

THAILAND

แหล่งข้อมูล

http://www.tarc.ait.ac.th/th/index.php

ข้อมูลเบื้องต้น

- •เหตุเกิดบนถนนพหลโยธินขาเข้า กรุงเทพฯ ในช่องทางด่วน
- •ขณะที่รถกระบะกำลังวิ่งด้วยความเร็ว ค่าหนึ่ง ยางหน้าด้านซ้ายแตก ทำให้รถ เสียหลักพุ่งลงท้องร่องที่คั่นระหว่าง ช่องทางด่วนกับทางคู่ขนาน
- •ไม่มีผู้ได้รับบาดเจ็บในอุบัติเหตุครั้งนี้

รายละเอียดจากสถานที่เกิดเหตุ (1)

•ถนนพหลโยธิน:

- •บริเวณที่เกิดอุบัติเหตุเป็นเส้นทางตรง
- •ผิวถนนแห้งและมีวัสดุผิวหน้าเป็น asphalt

รายละเอียดจากสถานที่เกิดเหตุ (2)

- •รอยไถล หรือ skid marks บนไหล่ทางที่มี พื้นผิวเป็น asphalt
- •รอยไถลบริเวณถัดจากไหล่ทางซึ่งเป็นพื้นหญ้าและ โคลน
- •รอยไถลบริเวณท้องร่องซึ่งพื้นผิวประกอบด้วย หญ้า โคลนและก้อนกรวด

ข้อมูลสำหรับการวิเคราะห์เหตุการณ์ที่เกิดขึ้น

- •ระยะทางของรอยไถล บริเวณต่าง ๆ
 - •บริเวณไหล่ทาง $\approx 24~\mathrm{m}$
 - •บริเวณพื้นหญ้า $\approx 6~\mathrm{m}$
 - •บริเวณท้องร่อง $\approx 28~\mathrm{m}$
- •สัมประสิทธิ์ความเสียดทาน
- (coefficient of friction) บริเวณต่าง ๆ
 - •บริเวณไหล่ทาง ≈ 0.84
 - •บริเวณพื้นหญ้า ≈ 0.64

Coefficients of friction used for different surface types

	(Kinetic friction)		
Surface type	Friction coefficient		
Dry sealed road	0.85		
Wet sealed road	0.75		
Dry unsealed road	0.70		
Dry shoulder	0.60		
Wet shoulder	0.50		
Loose gravel road	0.50		
Hail and sleet (sealed road)	0.50		
Black ice/smooth wet surface	0.10		

A standard value for kinetic friction is 0.7

ความสัมพันธ์ระหว่างงานและพลังงานจลน์

• รอยไถลบอกความเร็วรถยนต์

ในขณะที่ล้อรถล็อกเนื่องจากการเบรก จะเกิดแรงเสียดทานจากพื้นถนนต้านการไถล ของล้อ ทำให้บริเวณผิวหน้ายางเกิดความร้อนและละลายเกิดเป็นรอยไถลขึ้น พร้อม กันนี้ความเร็วของรถยนต์ลดลงหรือพลังงานจลน์น้อยลง ซึ่งเขียนออกมาในรูปของ สมการได้เป็น

$$w = \Delta K = K_f - K_i$$
 \rightarrow $Fd = \mu Nd = \mu mgd = \frac{1}{2}m(v_f^2 - v_i^2)$

Information given to determine the vehicle speeds at various locations

#	Locations	Surface material	Frictional coefficients	Average skid mark distances (m)	Vehicle speed before entering the location
1	Highway shoulder	Asphalt	0.84	24	
2	Grassy roadside	Grass & mud	0.64	6	
3	Ditch	Grass, mud & stones	0.63	28	

In the following calculations, we assume that the braking efficiency of the vehicle is 100%. We work in reverse from the point of rest to determine the initial speed of the truck.

ข้อสังเกตเกี่ยวกับการเกิดรอยไถลบนพื้นถนนเนื่องจากการเบรก

ในขณะที่คนขับเริ่มกดเบรก ล้อรถไม่ได้ถูกล็อกทันที เนื่องจากมีช่วงระยะเวลาในการ ตอบสนองและประสิทธิภาพการทำงานของระบบเบรก ดังนั้นค่าความเร็วที่ได้จาก การคำนวณโดยอาศัยรอยไถล จึงเป็นค่าความรเร็วที่น้อยกว่าค่าที่ควรจะเป็น

http://www.tarorigin.com/art/Elivesay/

กราฟ ระหว่างความเร็ว และ ระยะทาง ของรถกระบะที่ประสบอุบัติเหตุ

อัตราความเร็วของยานพาหนะตามพระราชบัญญัติจราจร ทางบก ฉบับ 8 พ.ศ. 2551

- 1.สำหรับรถบรรทุกที่มีน้ำหนักรถรวมทั้งน้ำหนักบรรทุกเกิน 1,200 กิโลกรัมหรือรถบรรทุกคนโดยสาร ให้ ขับในเขตกรุงเทพมหานคร เขตเมืองพัทยา หรือเขตเทศบาลไม่เกิน 60 กิโลเมตรต่อชั่วโมง หรือนอกเขต ดังกล่าวให้ขับไม่เกิน 80 กิโลเมตรต่อชั่วโมง
- 2.สำหรับรถยนต์อื่นนอกจากรถที่ระบุไว้ใน 1 ขณะที่ลากจูงรถพ่วงรถยนต์บรรทุกที่มีน้ำหนักรถรวมทั้ง น้ำหนักบรรทุกเกิน 1,200 กิโลกรัม หรือรถยนต์สามล้อให้ขับในเขตกรุงเทพมหานคร เขตเมืองพัทยา หรือ เขตเทศบาล ไม่เกิน 45 กิโลเมตรต่อชั่วโมง หรือนอกเขตดังกล่าวให้ขับไม่เกิน 60 กิโลเมตรต่อชั่วโมง
- 3.สำหรับรถยนต์อื่นนอกจากรถที่ระบุไว้ใน 1 หรือ 2 หรือรถจักรยานยนต์ ให้ขับในเขตกรุงเทพมหานคร เขตเมืองพัทยา หรือเขตเทศบาล ไม่เกิน 80 กิโลเมตรต่อชั่วโมง หรือนอกเขตดังกล่าวให้ขับไม่เกิน 90 กิโลเมตรต่อชั่วโมง
- http://www.tarc.ait.ac.th/th/speed7.php

Stopping distance

ในแผนภาพนี้ reaction time มีค่าประมาณเท่าใด?

Stopping distance

- The stopping distance is found by adding the applicable perception-reaction (or thinking) distance and the applicable skid mark (or braking) distance.
- Stopping distance = thinking distance + braking distance
- Total braking distance (m) =
- Thinking distance (m) =
- Therefore, the stopping distance of the truck (m) =

Reaction time equals mental processing time plus movement time

- Racing driver left foot braking: 0.2 0.3 seconds
- Fully aware of braking point: 0.70 to 0.75 seconds to apply brakes
- Unexpected but common signals: 1.25 seconds
- Surprise braking event: 1.5 seconds

Source: "How Long Does It Take to Stop?" Methodological Analysis of Driver Perception-Brake Times (2000).

http://www.visualexpert.com/Resources/green_transportation_hf.pdf

ผลสรุปจากการศึกษา

- คณะผู้วิจัยจาก TARC สรุปปัจจัยที่มีผลต่อการเกิดอุบัติในครั้งนี้ว่าขึ้นกับ
 - Vehicle factor : เนื่องจากสภาพของยางที่เก่า ขาดการดูแล มีแนวโน้ม ที่จะทำให้เกิดอุบัติเหตุได้ง่าย
 - Human factor : เนื่องจากการขับรถเร็วเกินกว่าความเร็วที่กำหนด ทำ ให้ไม่สามารถบังคับรถได้เมื่อเกิดอุบัติเหตุ
 - Road-environment factor : เนื่องจากไหล่ทางมีความลาดเอียง มาก ดังนั้นเมื่อรถเสียหลักพุ่งลงมาที่ไหล่ทาง การบังคับรถให้กลับมายัง เส้นทางเดิมจึงเป็นไปได้ยาก

Case study 2: midnight crash

The case involves a lady driver (Carol) driving a red car which knocked down a young male pedestrian (Henry) around midnight at a road junction. The driver was not injured and passed the alcohol test. However, the pedestrian was hurt badly. The following sketch was drawn by your colleague 1 hour after the accident:

https://www.edb.gov.hk > 5_Lesson_7_worksheets_withAns

Information provided for reconstruction

- -mass of the car and Carol: 1100 kg
- -mass of Henry: 60 kg
- -speed limit at the location: 50 km/h
- Friction coefficient = 0.7
- -point of impact: 28 m from the nearby traffic lamps
- -17 m long skid marks from the point of impact
- -Henry lay on the ground
- -clothes fibers and some blood spatters were found near Henry's body
- -a few street lamps were out of order during the accident
- -the manufacturer of Carol's car claimed that the maximum acceleration of the car is 2.4 ms⁻²

Testimony

Carol (the driver, a nurse, 40, mother of 3 kids)

When I was hurrying to the hospital for work that night, I stopped my car before the red traffic light. The road was dark. After the traffic light turned green and making sure that the road ahead was clear, I drove across the road junction. Suddenly, I saw a person wearing dark clothes appearing in front of me. I swear that I couldn't see him until the last moment. I pressed my horn sharply but he didn't seem to have any response. Everything was too late and my car knocked him down. I applied the brake immediately to stop my car. I was so scared that I stayed in my car until the police came.

Henry (the injured person, a salesman, 26, single)

After drinking with my friends, I left the bar around midnight. I intended to catch the last bus home. The pedestrian lamp was green and flashing when I was running across the road. Suddenly, without sounding its horn a car at high speed came to me from my right hand side and knocked me unconscious.

What is your verdict? Who is lying?

Accident reconstruction

Case study 3: Collision with pedestrian

adapted from The analysis of an accident by

J S Anslow, Queen Elibeth's Grammar School, Blackburn,

Lancashire BB2 6DF, UK, Physics Education. 33, 286-291,1998.

ข้อมูลเบื้องต้น

- พยานในที่เกิดเหตุให้การต่อพนักงานสอบสวนว่าชายชราถูกรถชนจนเสียชีวิต ขณะเดินข้ามทางม้าลายจากทางด้านทางเท้า ตรง impact point แต่คนขับ ให้การว่าชายชราเดินตัดลงมาจากเกาะกลางถนนอย่างกระทันหันทำให้หยุด รถไม่ทันจึงทำให้เกิดอุบัติเหตุ
- คำให้การจากพยานหรือคนขับมีความน่าเชื่อถือมากกว่ากัน?

รายละเอียดจากสถานที่เกิดเหตุ

ระยะทางระหว่างทางเท้ากับเกาะกลางถนน $= 5.6 \, \mathrm{m}$ ระยะทางระหว่างจุดที่ชายชราถูกชนกับเกาะกลางถนน $= 1.3 \, \mathrm{m}$ ความยาวของรอย skid mark ก่อนชน $= 15.4 \, \mathrm{m}$ ความยาวของรอย skid mark หลังชน $= 19.7 \, \mathrm{m}$ ความยาวของรอย skid mark ทั้งหมด $= 35.1 \, \mathrm{m}$

การคำนวณหาความเร็วของรถยนต์ในแต่ละตำแหน่ง

	ความเร็ว
ตำแหน่งที่เกิดการชน	
ตำแหน่งที่เริ่มเกิดรอย skid mark	

ให้พิจารณา (1) สัมประสิทธิ์ความเสียดทานระหว่างล้อรถกับพื้นถนนเป็น 0.76 และ (2) ไม่มีการเสียพลังงานจลน์เนื่องจากการชน

คำนวณหาช่วงเวลาที่รถยนต์ใช้ในการเคลื่อนที่ระหว่างตำแหน่งทั้ง สอง

ช่วงเวลาที่รถยนต์เคลื่อนที่จากตำแหน่งที่เกิดรอย skid mark จนถึงตำแหน่งที่ เกิดการชน =

การคำนวณหาช่วงเวลาก่อนเกิดเหตุ

- ช่วงเวลาที่คนขับเริ่มสังเกตเห็นคนข้ามถนนจนกระทั่งเหยียบเบรกเรียกว่า ระยะเวลาในการตัดสินใจ (reaction time) มีค่าอยู่ในช่วง 0.7 1.5 s (ข้อมูลจาก "How long does it take to stop?" Methodological Analysis of Driver Perception-Brake Times (2000))
- ช่วงเวลานับตั้งแต่คนขับเห็นคนข้ามถนน เหยียบเบรก และรถพุ่งชนคน คือs
- ในช่วงเวลาดังกล่าวคนชราสามารถเดินได้ระยะทาง...........m

อัตราเร็วในการเดินของคน

- อัตราเร็วในการเดินของคนขึ้นกับหลายปัจจัย เช่น อายุ สภาพทางเดิน ความสมบูรณ์ของร่างกาย หรือแม้แต่วัฒนธรรม
- โดยเฉลี่ยแล้วอัตราเร็วในการเดินของคนหนุ่มสาวมีค่าประมาณ 5.32 km/h ถึง 5.43 km/h (1.48 m/s) ถึง 1.51 m/s) และสำหรับ คนชรามีค่าประมาณ 4.51 km/h ถึง 4.75 km/h (1.25 m/s) ถึง 1.32 m/s)

http://en.wikipedia.org/wiki/Walking

ผลสรุปที่เป็นไปได้จากการคำนวณ

ผลสรุปที่มีโอกาสเป็นไปได้คือ ขณะที่ชายชรากำลังเดินอยู่บนทางม้าลาย มุ่งหน้าไป ยังเกาะกลางถนน รถคันนี้ก็วิ่งมาชนตรง point of impact